Tetrachlorobis(triethylarsine Oxide)uranium(IV): UCl4.2(TEASO)

By Polly Sommerville and Michael Laing
Chemistry Department, University of Natal, Durban 4001, South Africa

(Received 12 December 1975; accepted 5 January 1976)

Abstract

UCl}_{4}\left\{\mathrm{OAs}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right.\)], $\mathrm{UCl}_{4} \mathrm{As}_{2} \mathrm{O}_{2} \mathrm{C}_{12} \mathrm{H}_{30}, M$ $=736$. Monoclinic, $P 2_{1} / n, a=13 \cdot 67$ (1), $b=11 \cdot 24$ (1), $c=7 \cdot 705$ (5) $\AA, \beta=103 \cdot 2(1)^{\circ}, U=1152 \AA^{3}, D_{c}=2 \cdot 128$ $\mathrm{g} \mathrm{cm}^{-3}, Z=2, \mu($ Mo $K \alpha)=99.9 \mathrm{~cm}^{-1} . R=0.042$ for 1631 observed data; U , As and two Cl atoms anisotropic and H atoms included. The two $\mathrm{OAs}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$ ligands are trans coordinated to the U in the squareplanar UCl_{4} group. $\mathrm{U}-\mathrm{Cl} 2 \cdot 66,2 \cdot 67$; $\mathrm{U}-\mathrm{O} 2 \cdot 16$, As-O $1.71 \AA$; mean As-C $1.92 \AA ;$ U-O-As 154°.

Introduction. Recent studies have shown that arsine oxide ligands are stronger oxygen donors than their P analogues, and are especially effective in replacing Cl^{-} ions in the coordination sphere of UCl_{4} (du Preez, Edge, Gibson, Rohwer \& van Vuuren, 1976). Previous crystallographic work has shown that the species $\mathrm{UCl}_{4} .2 \mathrm{~L}, \mathrm{~L}=$ substituted phosphine oxide, may be trans for L=HMPA (de Wet \& Darlow, 1971) and PTPA (Nassimbeni, 1975) or cis for $\mathrm{L}=$ TPPO (Bombieri, Brown \& Graziani, 1975). [UCl $\left.\left\{\mathrm{CAAs}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right]$ was the first arsine oxide complex of UCl_{4} to be reported (Lane \& Venanzi, 1969) and it was of interest to determine whether the stronger U-O interaction would have any detectable effect on the $\mathrm{U}-\mathrm{Cl}$ and $\mathrm{U}-\mathrm{O}$ lengths.

Suitable crystals were supplied by Professor J. G. H. du Preez. They were moisture-sensitive, and had to be sealed in capillaries. Data were collected from a crystal $0.15 \times 0.30 \times 0.15 \mathrm{~mm}$ on a Philips four-circle diffractometer with graphite-monochromated Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$) for θ between 3 and 25°. The $\omega-2 \theta$ scan technique was used; the scan width was 1.0°, the scan time was 33 s and the background was counted for 33 s for each peak. Of the 2133 reflexions measured, 1631 were classed as observed, $I>1 \cdot 65 \sigma(I)$. Three reflexions were used as standards and their intensities remeasured after every 60 reflexions; no decomposition was detected. The intensities were corrected for Lorentz and polarization effects only. A temperature-sharpened

Patterson map confirmed that the U atom was at $0,0,0$ and gave the coordinates of the As atom. The Cl, O and C atoms were found in the subsequent Fourier map. The structure was refined by block-diagonal least squares with U , As and two Cl atoms anisotropic, O and six C atoms isotropic. When R reached 0.044 , a difference map clearly showed electron density in regions where the H atoms could be expected. The 15 H atoms were included in the structure factor calculations and the parameters of the heavy atoms refined to convergence; final $R=0.042$ for 1631 observed

Table 1. Atomic coordinates and thermal parameters
(a) Fractional atomic coordinates and isotropic thermal parameters*

	x	y	z	$B\left(\AA^{2}\right)$
U	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	
As	$0 \cdot 2083$ (1)	0.0961 (1)	$0 \cdot 3831$ (1)	
$\mathrm{Cl}(1)$	0.0401 (2)	$0 \cdot 2208$ (2)	-0.0853 (3)	
$\mathrm{Cl}(2)$	-0.1297 (2)	0.0895 (2)	$0 \cdot 1775$ (4)	
0	$0 \cdot 1205$ (4)	$0 \cdot 0174$ (6)	$0 \cdot 2339$ (8)	$3 \cdot 25$ (13)
C(1)	$0 \cdot 2745$ (7)	$0 \cdot 2024$ (9)	$0 \cdot 2533$ (13)	3.64 (20)
C(2)	$0 \cdot 3225$ (8)	$0 \cdot 1358$ (11)	$0 \cdot 1176$ (15)	4.92 (27)
C(3)	$0 \cdot 3018$ (7)	-0.0163 (9)	$0 \cdot 5156$ (13)	3.73 (21)
C(4)	0.3853 (8)	0.0476 (10)	0.6533 (15)	4.54 (25)
C(5)	$0 \cdot 1405$ (8)	$0 \cdot 1858$ (10)	0.5332 (14)	$4 \cdot 37$ (24)
C(6)	0.0857 (9)	$0 \cdot 2926$ (11)	$0 \cdot 4514$ (16)	$5 \cdot 31$ (28)
H(11)	0.330	0.245	0.345	
H(12)	0.225	$0 \cdot 260$	$0 \cdot 185$	
H(21)	0.355	$0 \cdot 195$	0.055	
H(22)	0.265	0.095	0.030	
H(23)	$0 \cdot 370$	0.080	$0 \cdot 185$	
H(31)	$0 \cdot 330$	-0.060	0.430	
H(32)	$0 \cdot 260$	-0.070	0.575	
H(41)	$0 \cdot 430$	-0.015	0.720	
H(42)	0.350	0.090	0.735	
H(43)	$0 \cdot 420$	0.105	0.590	
H(51)	0.190	0.210	0.650	
H(52)	0.095	$0 \cdot 130$	$0 \cdot 580$	
H(61)	0.055	0.330	0.540	
H(62)	0.035	$0 \cdot 265$	0.345	
H(63)	0.135	$0 \cdot 345$	$0 \cdot 415$	

Table 1 (cont.)
(b) Anisotropic thermal motion parameters $\left(\times 10^{5}\right)$. The expression is $\exp \left[-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+h k \beta_{12}+h l \beta_{13}+k l \beta_{23}\right)\right]$.

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
U	$263(2)$	$483(4)$	$1191(9)$	$-69(7)$	$22(7)$	$86(14)$
As	$277(5)$	$430(8)$	$960(19)$	$12(12)$	$2(15)$	$-38(22)$
$\mathrm{Cl}(1)$	$452(15)$	$528(22)$	$1773(58)$	$-95(30)$	$321(48)$	$279(58)$
$\mathrm{Cl}(2)$	$562(18)$	$795(26)$	$2149(65)$	$123(37)$	$983(55)$	$30(71)$

data.* Weighting was proportional to $1 / \sigma(F)$. Scattering factors for neutral atoms were used (International Tables for X-ray Crystallography, 1962); that of U was corrected for anomalous dispersion. Final positional and thermal parameters are given in Table 1, bond lengths and angles in Table 2: estimated standard deviations are given in parentheses.

Table 2. Interatomic distances (\AA) and bond angles (${ }^{\circ}$)
(a) Bond lengths and angles

$\mathrm{U}-\mathrm{Cl}(1)$	$2.66(1)$	$\mathrm{Cl}(1)-\mathrm{U}-\mathrm{Cl}(2)$	$88.5(5)$
$\mathrm{U}-\mathrm{Cl}(2)$	$2.67(1)$	$\mathrm{Cl}(2)-\mathrm{U}-\mathrm{O}$	$90 \cdot 5(5)$
$\mathrm{U}-\mathrm{O}$	$2.16(1)$	$\mathrm{Cl}(1)-\mathrm{U}-\mathrm{O}$	$88.0(5)$
$\mathrm{O}-\mathrm{As}$	$1.71(1)$	$\mathrm{U}-\mathrm{O}-\mathrm{As}$	$154(1)$
$\mathrm{As}-\mathrm{C}(1)$	$1.91(2)$	$\mathrm{O}-\mathrm{As}-\mathrm{C}(1)$	$108(1)$
$\mathrm{As}-\mathrm{C}(3)$	$1.92(2)$	$\mathrm{O}-\mathrm{As}-\mathrm{C}(3)$	$107(1)$
$\mathrm{As}-\mathrm{C}(5)$	$1.92(2)$	$\mathrm{O}-\mathrm{As}-\mathrm{C}(5)$	$108(1)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.54(3)$	As-C(1)-C(2)	$112(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.54(3)$	As--C(3)-C(4)	$111(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.48(3)$	As--C(5)-C(6)	$116(2)$

(b) Important intramolecular non-bonded contacts

$$
\begin{array}{llll}
\mathrm{Cl}(1) \cdots \mathrm{C}(1) & 3.65 & \mathrm{Cl}(2) \cdots \mathrm{C}(6) & 3.95 \\
\mathrm{Cl}(1) \cdots \mathrm{C}(2) & 3.92 & \mathrm{Cl}(2)^{\prime} \cdots \mathrm{C}(2) & 3.97
\end{array}
$$

(c) Shorter intermolecular contacts

Unit-cell

$\mathrm{Cl}(1) \cdots \mathrm{C}(3)^{11}$	translation	
$\mathrm{Cl}(1) \cdots \mathrm{C}(4)^{11}$	-	3.61
$\mathrm{C}(1) \cdots \mathrm{Cl}(1)^{1}$	-	3.87
$\mathrm{C}(1) \cdots \mathrm{Cl}(2)^{1}$	-	3.66
$\mathrm{C}(2) \cdots \mathrm{Cl}(1)^{1}$	-	3.97
$\mathrm{C}(4) \cdots \mathrm{C}(6)^{1}$	-	3.69
$\mathrm{C}(5) \cdots \mathrm{Cl}(2)^{1}$	-	3.67
$\mathrm{Cl}(1) \cdots \mathrm{C}(5)$	$0,0,-1$	3.98
$\mathrm{Cl}(1) \cdots \mathrm{C}(6)$	$0,0,-1$	3.51
$\mathrm{C}(3) \cdots \mathrm{C}(1)^{11}$	$0,-1,0$	3.84

Equivalent positions
Superscript

None	x	y	z	(ii)	$\frac{1}{2}-x$	$\frac{1}{2}+y$	$\frac{1}{2}-z$
(i)	$\frac{1}{2}+x$	$\frac{1}{2}-y$	$\frac{1}{2}+z$				

Discussion. The molecule is centrosymmetric. The four Cl atoms are bonded to the U in a square plane and the two TEASO ligands are trans coordinated to the U (Fig. 1). The bond lengths and angles are similar to those observed in the related compounds $\mathrm{UCl}_{4} .2$ (TPPO) and $\mathrm{UCl}_{4} .2(\mathrm{PTPA})$ in both of which $\mathrm{U}-\mathrm{Cl}$ is 2.61 to $2.63 \AA$ and $\mathrm{U}-\mathrm{O}$ is 2.23 to $2.24 \AA$. The $\mathrm{U}-\mathrm{Cl}$ lengths are surprisingly close to the $2 \cdot 65,2 \cdot 66 \AA$ found in $\left[\mathrm{UO}_{2} \mathrm{Cl}_{4}\right]^{2-}$ (Sipio, Tondello, Pelizzi, Ingletto \& Montenero, 1974). In UCl_{4}. 2 (TEASO) the lengthening of the $\mathrm{U}-\mathrm{Cl}$ bonds appears to be accompanied by a real shortening of the $\mathrm{U}-\mathrm{O}$ bond because the As-O bond is significantly longer than the $1.644 \AA$ found in

[^0]

Fig. 1. A projection down y showing the numbering system.
$\mathrm{OAs}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} . \mathrm{H}_{2} \mathrm{O}$ (Ferguson \& Macaulay, 1969). All these observations are consistent with a stronger $\mathrm{U}-\mathrm{O}$ interaction than is observed in the phosphine oxide complexes.

The $\mathrm{C}_{2} \mathrm{H}_{5}$ groups in the TEASO ligand are folded in an irregular manner which is best illustrated by comparing the torsion angles $\mathrm{O}-\mathrm{As}-\mathrm{C}(1)-\mathrm{C}(2) 57^{\circ},-\mathrm{C}(3)-$ $C(4) 179^{\circ},-C(5)-C(6) 76^{\circ}$. Two ethyl groups are folded against the UCl_{4} plane [Table 2(b); $\mathrm{C}(2)$ and $\mathrm{C}(6)$] while the third stands away from it. This seems to reduce the packing density resulting in a mean volume of over $27 \AA^{3}$ per non-hydrogen atom in UCl_{4}. 2(TEASO) compared with $25 \AA^{3}$ in UCl_{4}. 2 (HMPA) and $24 \AA^{3}$ in UCl_{4}. 2 (PTPA).

We thank the South African Council for Scientific and Industrial Research for financial support, Dr G. Gafner of the National Physical Research Laboratory, CSIR, for collecting the intensity data, and Professor J.G.H. du Preez, University of Port Elizabeth, for suggesting the problem and for stimulating discussions.

References

Bombieri, G., Brown, D. \& Graziani, R. (1975). J. Chem. Soc. Dalton. pp. 1873-1876.
Ferguson, G. \& Macaulay, E. W. (1969). J. Chem. Soc. (A), pp. 1-7.

International Tables for X-ray Crystallography (1962). Vol. III, pp. 202, 203, 211, 216. Birmingham: Kynoch Press. Lane, B. C. \& Venanzi, L. M. (1969). Inorg. Chim. Acta, 3, 239-245.
Nassimbeni, L. R. (1975). Personal communication, manuscript in preparation.
Preez, J. G. H. du, Edge, R. A., Gibson, M. L., Rohwer, H. E. \& van Vuuren, C. P. J. (1976). J. S. Afr. Chem. Inst. In the press.
Sipio, L. D., Tondello, E., Pelizzi, G., Ingletto, G. \& Montenero, A. (1974). Cryst. Struct. Commun. 3, 297300.

Wet, J. F. de \& Darlow, S. F. (1971). Inorg. Nucl. Chem. Lett. 7, 1041-1048.

[^0]: * A table of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31593 (10 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI 1NZ, England.

